Production scheduling in industrial mining complexes with incoming new information using tree search and deep reinforcement learning
نویسندگان
چکیده
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDeep Reinforcement Learning with Model Learning and Monte Carlo Tree Search in Minecraft
Deep reinforcement learning has been successfully applied to several visual-input tasks using model-free methods. In this paper, we propose a model-based approach that combines learning a DNN-based transition model with Monte Carlo tree search to solve a block-placing task in Minecraft. Our learned transition model predicts the next frame and the rewards one step ahead given the last four frame...
متن کاملThinking Fast and Slow with Deep Learning and Tree Search
Sequential decision making problems, such as structured prediction, robotic control, and game playing, require a combination of planning policies and generalisation of those plans. In this paper, we present Expert Iteration (EXIT), a novel reinforcement learning algorithm which decomposes the problem into separate planning and generalisation tasks. Planning new policies is performed by tree sea...
متن کاملsynthesis and dna interaction studies of new cobalt (ii) complexes containing different dinitrogen aaromatic ligands with calf thymus dna using different spectroscopy methods
در این مطالعه بر هم کنش این چهار کمپلکس با dna تیموس گوساله توسط روش های اسپکتروفتومتری، فلوریمتری، دو رنگ نمائی دورانی، و ویسکوزیمتری بررسی شدند تا اثر استخلاف های متیل بر روی لیگاندهای فنانترولین بررسی گردد.
Active Reinforcement Learning with Monte-Carlo Tree Search
Active Reinforcement Learning (ARL) is a twist on RL where the agent observes reward information only if it pays a cost. This subtle change makes exploration substantially more challenging. Powerful principles in RL like optimism, Thompson sampling, and random exploration do not help with ARL. We relate ARL in tabular environments to BayesAdaptive MDPs. We provide an ARL algorithm using Monte-C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2021
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2021.107644